
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rcon20

Journal of the Institute of Conservation

ISSN: 1945-5224 (Print) 1945-5232 (Online) Journal homepage: https://www.tandfonline.com/loi/rcon20

Archiving complex digital artworks

Dušan Barok, Julie Boschat Thorez, Annet Dekker, David Gauthier & Claudia
Roeck

To cite this article: Dušan Barok, Julie Boschat Thorez, Annet Dekker, David Gauthier & Claudia
Roeck (2019): Archiving complex digital artworks, Journal of the Institute of Conservation, DOI:
10.1080/19455224.2019.1604398

To link to this article: https://doi.org/10.1080/19455224.2019.1604398

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 30 May 2019.

Submit your article to this journal

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=rcon20
https://www.tandfonline.com/loi/rcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19455224.2019.1604398
https://doi.org/10.1080/19455224.2019.1604398
https://www.tandfonline.com/action/authorSubmission?journalCode=rcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rcon20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/19455224.2019.1604398&domain=pdf&date_stamp=2019-05-30
http://crossmark.crossref.org/dialog/?doi=10.1080/19455224.2019.1604398&domain=pdf&date_stamp=2019-05-30
https://www.tandfonline.com/doi/citedby/10.1080/19455224.2019.1604398#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/19455224.2019.1604398#tabModule

Dušan Barok , Julie Boschat Thorez , Annet Dekker,
David Gauthier and Claudia Roeck

Archiving complex digital artworks

Abstract
The transmission of the documentation of changes made in each presentation of an
artwork and the motivation behind each display are of importance to the continued
preservation, re-exhibition and future understanding of artworks. However, it is gener-
ally acknowledged that existing digital archiving and documentation systems used by
many museums are not suitable for complex digital artworks. Looking for an approach
that can easily be adjusted, shared and adopted by others, this article focusses on open-
source alternatives that also enable collaborative working to facilitate the sharing and
changing of information. As an interdisciplinary team of conservators, researchers,
artists and programmers, the authors set out to explore and compare the functionalities
of two systems featuring version control:MediaWiki and Git. We reflect on their techni-
cal details, virtues and shortcomings for archiving complex digital artworks, while
looking at the potential they offer for collaborative workflows.

Keywords
art documentation; archiving; preservation; media conservation; complex digital art; version
control

Introduction
In 2017 UBERMORGEN, a Swiss-Austrian-American artist duo, submitted a
selection of their works to be taken into the collection of LIMA, a platform
for media art in Amsterdam. UBERMORGEN’s main body of work consists
of internet art, installation, video art, photography, software art and per-
formance, and uses the convergence of digital media to produce and
publish online and offline. Most of their early works were media hacking
projects using low-tech tools to reach large audiences. As part of LIMA’s
event series Cultural Matter—about the preservation, presentation and dis-
tribution of digital art—researcher and artist Julie Boschat Thorez was
asked to select one of the artworks as a starting point to discuss and con-
textualise the art historical and technical importance of their works. She
selected Chinese Gold (2006–ongoing), a project on the phenomenon of
industrial-scale gold mining in the online video game World of Warcraft
and operated from China. The project seemed to be the best candidate
because some time had passed since it was initiated and it had been exhib-
ited several times in multiple ways. It also represents the type of work UBER-
MORGEN is known for, involving a lot of research from which different
works develop. Hence, a careful consideration of the contexts and history
was needed to understand the meaning of the work and any of its
subsequent preservation measures.

Some of the first questions focussed on the different elements of the
work: what was the difference between the work and the documentation?
What should be considered as research or contextual material and what
should be seen as the actual work? Would it be necessary to make such
distinctions? How to preserve and present a work that does not have a
determined form? To provide some answers to those questions, many dis-
cussions took place with the artists, who also gave access to their extensive

(Received 16 January 2019; Accepted 3 April 2019)

Journal of the Institute of Conservation, 2019
https://doi.org/10.1080/19455224.2019.1604398

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-0691-0748
http://orcid.org/0000-0002-8979-987X
http://orcid.org/0000-0003-2612-5672
https://icon.org.uk/
http://www.tandfonline.com
http://creativecommons.org/licenses/by/4.0/

archive of the project, which complemented the information already gath-
ered through online research.

The first step was to list all the work’s elements and the multiple presenta-
tions, both online and offline, andwith this information in place, and together
with the help of the artists, an extensive description of the project could be
made as well as a choice about which elements to keep. Chinese Gold can
be described as a complex digital artwork1—a heterogeneous assemblage,
from which the various elements can be combined, composed and compiled
in different ways, at different times and locations (online and offline) and by
different people.2 The next step involved the current research team thinking
about all these types of documents, documentation and other materials that
were collected and how to archive them in a way that would do justice to the
ever-changing nature of thework, in such away that it would also beuseful for
future preservation projects.

The transmission of an artist’s research, the documentation of any
changes in the presentation of the work, and the motivation behind each
display are of importance to the continued preservation, re-exhibition
and future understanding of the work. However, it is generally acknowl-
edged that existing digital archiving and documentation systems used by
many museums, such as The Museum System or Adlib, are not suitable
for these particular kinds of artworks due to their rigidity. For example,
one cannot easily represent changes in the evolution of the work, nor
show the relations between its different elements.3 Even though standard
schema can be adjusted to specific needs, most applications are developed
by commercial companies and this kind of flexibility comes at a price. More-
over, proprietary solutions usually have high licensing costs and lack a more
open model of governance. To move away from these systems and, more
importantly, looking for an approach that can easily be adjusted, shared
and adopted by others, the research team focussed on open-source
alternatives that would also enable collaborative working to facilitate the
(future) sharing and changing of information. With this choice, the team
also hoped to build alliances with existing communities of practice,
testing and using open-source alternative documentation systems.

While the research presented here is not focussed on preservation of the
different elements of an artwork, it does provide a means to discuss alterna-
tive ways of documenting the changes and different versions of an artwork
that take place in its biography and exhibition history, which are important
to consider for both future redisplays and preservation of the work.4 In this
sense the research builds on discussions around the value of allographic
provenance and versioning in relation to complex artworks.5 As an interdis-
ciplinary team of conservators, researchers, artists and programmers, we
are determined to explore and compare the functionalities of two
systems featuring version control and web interface: MediaWiki and Git,
and its associated repository manager GitLab.6

Another reason for taking this direction relates to several early steps that
were done in archival and conservation practices to test the usefulness of
wiki-based platforms and version control systems for documenting art-
works.7 This research could be useful to further the discussion and
expand the working methods and possibilities.

The study then focussed on how the version control elements of these
systems encourages collaboration between conservators, curators and/or
artists in archiving complex digital artworks by reflecting on the technical
details of the different systems, their virtues and shortcomings.

Chinese Gold: the data
UBERMORGEN were founded in 1995 by Lizvlx and Hans Bernhard.
Together they developed a series of landmark projects in digital art,

1 In contemporary art conservation,
complex artworks have been con-
sidered to be installations and other
types of work with one or more of the
following elements: variable form (e.g.
involving non-dedicated, replaceable
components), conceptual or otherwise
immaterial features crucial for re-exhibi-
tion, being process-based and being
open-ended—see, among others, Pip
Laurenson, ‘The Conservation and
Documentation of Video Art’, in
Modern Art: Who Cares? (Amsterdam:
Foundation for the Conservation of
Modern Art, 1999).

2 A similar way of working, and thus set
of challenges, is inherent in many digital
artworks, including mouchette.org by
Martine Neddam, the practice of
Young-Hae Chang Heavy Industries or
Lynn Hershman Leeson. For more infor-
mation see, for example, Annet Dekker,
Gabriella Giannachi, and Vivian van
Saaze, ‘Expanding Documentation, and
Making the Most of the “Cracks in the
Wall”’, in Documenting Performance.
The Context and Processes of Digital
Curation and Archiving, ed. Toni Sant
(London/New York: Bloomsbury, 2017),
61–78; and Annet Dekker, Collecting
and Conserving Net Art: Moving
beyond Conventional Methods (Oxon:
Routledge, 2018).

3 Cf. Annet Dekker and Patricia Falcão,
‘Interdisciplinary Discussions about the
Conservation of Software-Based Art.
Community of Practice on Software-
Based Art’, PERICLES, March 2017,
http://www.tate.org.uk/download/file/
fid/108032 (accessed 23 September
2018); Deena Engel and Glenn
Wharton, ‘Managing Contemporary Art
Documentation in Museums and
Special Collections’, Art Documen-
tation: Journal of the Art Libraries
Society of North America 36, no. 2
(2017): 293–311.

4 On an artwork’s biography see, for
example, Renée van de Vall et al.,
‘Reflections on a Biographical Approach
to Contemporary Art Conservation’, in
ICOM-CC 16th Triennial Conference—
Lisbon 2011, ed. J. Bridgland (Almada:
Critério, 2011), 1–8.

5 For more information see, for
instance, Renée van de Vall, ‘Document-
ing Dilemmas. On the Relevance of Ethi-
cally Ambiguous Cases’, Revista de

2 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

http://www.tate.org.uk/download/file/fid/108032
http://www.tate.org.uk/download/file/fid/108032

including Vote-Auction (2000), a media performance involving a false site
where Americans could supposedly put their vote up for auction, and
Google Will Eat Itself (GWEI) (2005, in collaboration with Alessandro Ludo-
vico and Paolo Cirio), a project that proposed using Google’s own advertis-
ing revenue to buy up every single share in the company. UBERMORGEN
use their projects to create alternative narratives so as to critically reflect
on networked culture, and to reveal something of the inside and downside
of a ‘post-truth’ society.

Chinese Gold (2006–ongoing) reflects on the process of gold mining
within the multiplayer online role-playing game World of Warcraft, which
consists of generating an excess of in-game money to be then sold via
online trading platforms. The artwork revolves around a partially fictive
research project into the phenomenon to underline how virtual currency
trading recreates familiar geometries of industrial good production in a glo-
balised economy. Spanning over a decade, Chinese Gold consists of a mix
of research, original computer files and documentation, and is presented in
multiple ways in which methods such as appropriation, storytelling and
remixing are used in parallel. As such, the project is constantly evolving,
growing and in flux. Consequently, the documents and documentation
about the work are scattered and at first sight there seems to be little
logic to the structure of the digital storage of the project as supplied by
the artists. As such any current re-construction of Chinese Gold would not
be a straightforward procedure. Since the process of creation and re-cre-
ation of the work is heterogeneous and involves a certain level of improvi-
sation that continually re-negotiates its structure, its documentation archive
should ideally reflect this approach, while also enabling the re-visioning of
past iterations and information.

One of the places where some information about the work is presented is
the dedicated web page made by the artists for the project which indexes
the work’s constitutive elements: the research, literature on the project, and
information about past exhibitions and partners.8 It is specified that the
work consists of an ensemble of four image series—‘Belgrade Series’ with
eight images, ‘Blue Series’ with seven images, ‘MTV Series 3’ with six
images and ‘MTV Series 4’ with six images—and a 14:12min-long video
made by repurposing online game graphic engines to create a cinematic-
like production in an art genre known as ‘Machinima’. Between 2006 and
2017 the work was shown by several art galleries and organisations with
each iteration being different in response to both the exhibition space
and the particular curatorial theme (Fig. 1). In conversation with each

Fig. 1 Left: Installation view of Chinese Gold, part of Cultural Matter, LIMA, Amsterdam, 2017.
Right: detail from Chinese Gold, Untitled 1-7 (Blue Series), 2006. Courtesy of artists

História da Arte (2015): 7–17; and
Dekker, Collecting and Conserving Net
Art, 127–39.

6 This research began with the ‘Version-
ing the Networked Archive’ workshop
initiated by Annet Dekker and Miglena
Minkova at the Re:learn summer school
at Poortgebouw, Rotterdam, 29
August–2 September 2017 and was con-
tinued during the ‘Collaborative Archiv-
ing of Digital Art’ workshop at Digital
MethodsWinter School at the University
of Amsterdam, 8–12 January 2018.

7 In the case of media arts but also more
widely in contemporary arts, with, for
example, wiki-based documentation
initiatives at San Francisco Museum of
Modern Art (SFMOMA), ZKM | Center
for Art and Media Karlsruhe and
New York University (NYU).

8 http://www.ubermorgen.com/2007/
projects/Chinese_Gold/ (accessed 17
March 2019). The last update dates
back to 2011, and reflects the state of
the project at the time.

Archiving complex digital artworks 3

Journal of the Institute of Conservation 2019

http://www.ubermorgen.com/2007/projects/Chinese_Gold/
http://www.ubermorgen.com/2007/projects/Chinese_Gold/

curator the artists would select and (re)produce specific items to represent
the work. In the absence of detailed guidelines the work has thus been
materialised in many different ways that have been influenced further by
factors such as technical possibilities, type of audience, curatorial decisions
and so forth.

As a test case, UBERMORGEN gave the team access to their archive of
Chinese Gold, which amounted to more than 10GB of data (see Fig. 2).
To simplify the testing of different systems we decided to focus on the
oldest folder in the Chinese Gold archive: ‘CHINESE_GOLD_2006’. This
choice was also motivated by the diversity of its file formats, which was
representative of the overall archive. ‘CHINESE_GOLD_2006’ consisted
of 337 files—41 of them hidden files—in 66 directories, and most of the
files were images (see Table 1). The images vary in format, colour, size
and cropping, revealing that the series was created in a long process of
filtering images to fit the project’s narrative.

Alongside press articles, e-mails and other research items, the folders
also contained the work’s image files in multiple versions. The team had

Table 1 The distribution of file extensions by type.

Count Extension

117 jpg
82 png
67 none (folder)
57 tif
41 DS_Store (hidden Mac OS files)
12 zip
6 html
5 doc
4 mov
3 gif
2 rtf
1 dv
1 iMovieProj
1 iMovieProject
1 mp4
1 odt
1 pdf
1 xls

Fig. 2 A diagram of the folder structure of artists’ archive. Courtesy of Judith Hartstein.

4 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

learnt from the artists that they select versions of these files for different
publications and exhibition contexts, which is reflected in the naming of
the folders, for example: 2014_CONTEMPORARY_ISTANBUL_HIGH_RES,
IMAGES_FOR_CULTURAS_2008_CATALOGUE, NIMk_exhibition and so
on. The image files exist in multiple copies and in various sizes and resol-
utions. Besides this, the folders contain the artists’ research on the topic
including downloaded images and news articles, e-mail correspondence
and website snapshots. Although these items have yet to be used by the
artists as part of any presentation, they are potentially useful in informing
researchers about their methods and the project’s development. The
team also collected additional information to fill some of the gaps in the
archive thought necessary for future research including, for example,
wider information about the contexts of the exhibitions in which the work
was presented.

Version control: an introduction
Finding a coherent and structured way to organise and control revisions has
always been at the core of archival practices. In the era of computing, these
fundamentals became even more urgent and complex, and stimulated the
development of ‘version control systems’ (VCS). Version control systems
typically check the differences between versions of code or text as well as
of file structures. By archiving through an agency of timestamping and
the author’s name, and by making ongoing versions of a project available,
a VCS allows multiple people to work on elements of a project without over-
writing each others’ modifications and variation changes. Changes that are
made can easily be compared, restored or, in some cases, merged. A VCS is
also a necessary archival allowance for computer-based art due to the fre-
quency of memory-intensive files and variations on those files within the
evolution of those artworks.

1 Wiki
Wikipedia is perhaps the most well-known example of an online platform
using version control in its ‘page history’. Its difference engine is based
on character-by-character analysis and allows users to check the differences
between new and previous versions of pages. However, developing version
control began in the late 1960s,9 when it was primarily used for isolating
something that didn’t function as expected and the code needed to be
revised; by tracing the history one could find the bug that caused the
problem.10 In 1995 Ward Cunningham developed WikiWikiWeb as the
first user-editable website with the main idea that it would facilitate quick
communication between software developers.11 Another popular wiki
was MediaWiki from 2002, developed by a Wikipedia volunteer Magnus
Manske, and based on the wiki software ‘UseModWiki’, created by Clifford
Adams for Wikipedia.12 The wiki software was ‘originally developed for
project documentation and collaboration around Agile software develop-
ment’.13 One of the main changes in MediaWiki was that anyone could
review the changes that were made, allowing easy detection and undoing
of any perceived mistakes.

2 Git and GitLab
In contrast to these early wikis, Linus Torvalds, creator and principal devel-
oper of the Linux kernel, designed Git not to document software projects
nor facilitate communication between developers per se, but as a platform
on which to directly write and develop source code. Before creating Git,
Torvalds relied on a proprietary product called Bitkeeper for the source
code management (SCM) of the Linux kernel. Following the breakdown
of relations between the Linux developer community and the company

9 See Aymeric Mansoux, ‘Sandbox
Culture’ (PhD thesis, Goldsmiths Univer-
sity, London, 2017), 343.

10 See Marc J. Rochkind, ‘The Source
Code Control System’, IEEE Trans-
actions on Software Engineering 1, no.
4 (1975): 364–70.

11 Hence the name ‘wiki’, which is
Hawaiian for quick.

12 See Jennifer Joline Anderson, Wiki-
pedia: The Company and Its Founders
(Edina, MN: ABDO Publishing
Company, 2011).

13 Matthew Fuller et al., ‘Big Diff, Gran-
ularity, Incoherence, and Production’, in
Memory in Motion: Archives, Technol-
ogy, and the Social, ed. I. Blom,
T. Lundemo and E. Røssaak (Amster-
dam: Amsterdam University Press,
2016), 90.

Archiving complex digital artworks 5

Journal of the Institute of Conservation 2019

owning Bitkeeper, Torvalds created Git in 2005.14 With Git, he intended to
improve the performance of existing SCM systems, especially in relation to
speed when applying patches and updating versions; to simplify SCM
design and make it fully distributable; and to support non-linear develop-
ment such as parallel branching.15 Git makes it possible to write code in a
decentralised and distributed way by encouraging ‘branching’, that is, a
mechanism that allows various people to work on multiple versions of a
work at the same time. As well, and of particular interest to our research,
branching facilitates the tracking and auditing of changes.

In 2007 GitHub Inc. started hosting Git repositories (or repos) online at
github.com. Interestingly, as such GitHub quickly evolved into a site of
so-called ‘social coding’,16 and rather quickly the collaborative coding repo-
sitories became used for widely diverse needs: from software development
to writing licence agreements, sharing Gregorian chants and announcing a
wedding—anything, as it turns out, that needs quick information sharing.

For the project, the team focussed on GitLab as it is an open-source
alternative to GitHub. While Git is the core system for version control,
online hosting platforms such as GitHub and GitLab provide web interfaces
to view the content of a given repository, including the changes applied to
it, and the collaborators that have made these changes over time. While
there is a panoply of free hosting platforms we could have used instead
of GitLab, such as GitHub, Bitbucket and SourceForge, the decision to
host the repository on GitLab was based on a compromise between a
sense of political integrity in the advocacy of free software and the practical
lack of time for deploying and customising an alternative self-hosted Git
platform on our own dedicated servers.17 It is important to note though
that while most hosting platforms currently available online offer free
hosting plans, they are in most cases built on top of closed-source infra-
structures and opaque business models. As Aymeric Mansoux remarked,
in the case of GitHub, ‘the employees and founders of the platform,
whose core components are strategically closed-source, are the ones to
decide what projects and behaviours are acceptable’,18 an observation
that becomes profound considering the extremely closed business model
of GitHub, now owned by Microsoft.19 A paradox thus emerges from
these platforms: they are built on top of an open-source infrastructure—
Git—and typically demand that hosted projects be similarly open-source,
but their own meta-infrastructure is unquestionably closed. This contradic-
tion, which Mansoux brilliantly analyses, is one of the main reasons the team
decided to useGitLab, which is open-source, instead ofGitHub.20 As briefly
mentioned earlier, building alliances with open-source communities of
practices, such as software development and maintenance, offers the
means to tailor the software depending on one’s needs, and in so doing,
allows for fine grained and sustainable functional customisations as open-
source software is freely available and allows system design and infrastruc-
tural decisions to be made and acted upon in diverse partnerships.

Furthermore, a given repository can be configured to ensure that only
specific known collaborators can view, read and write to it, and that since
Git is a decentralised system decoupled from any online hosting platform,
any Git repository can be migrated from a given platform to another at
any time.

Git and MediaWiki: a system-level comparison
Before detailing the experiments made with UBERMORGEN’s Chinese
Gold archive, it is worth comparing the basic system-level principles under-
pinning both Git/GitLab and MediaWiki, starting with their versioning
models and synchronisation techniques to highlight the salient differences
between both systems.

14 See Scott Chacon and Ben Straub,
Pro Git. Everything You Need to Know
About Git, 2nd edn (New York, NY:
Apress, 2014), 13.

15 Chacon and Straub, Pro Git, 11.

16 Cf. Fuller et al., ‘Big Diff, Granularity,
Incoherence, and Production’.

17 There are other self-hosted plat-
forms such as Gitea, stagit and Gogs,
yet the choice of using free GitLab
seemed a more viable option given
that our initial work was conducted as
part of a workshop. Having said this,
our findings would still apply to most
of these self-hosted platforms as they
present, more or less, the same func-
tionality as GitLab.

18 Mansoux, ‘Sandbox Culture’, 353.

19 See, for example, Tom Preston-
Werner, ‘Open Source (Almost) Every-
thing’, 22 November 2011, http://tom.
preston-werner.com/2011/11/22/open-
source-everything.html (accessed 22
September 2018); Satya Nadella,
‘Microsoft + GitHub = Empowering
Developers’, The Official Microsoft
Blog, 4 June 2018, https://blogs.micro
soft.com/blog/2018/06/04/microsoft-
GitHub-empowering-developers/
(accessed 22 September 2018).

20 Mansoux, ‘Sandbox Culture’.

6 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

http://tom.preston-werner.com/2011/11/22/open-source-everything.html
http://tom.preston-werner.com/2011/11/22/open-source-everything.html
http://tom.preston-werner.com/2011/11/22/open-source-everything.html
https://blogs.microsoft.com/blog/2018/06/04/microsoft-GitHub-empowering-developers/
https://blogs.microsoft.com/blog/2018/06/04/microsoft-GitHub-empowering-developers/
https://blogs.microsoft.com/blog/2018/06/04/microsoft-GitHub-empowering-developers/

1 Versioning models
MediaWiki is a web-based publishing system that is hosted on a server. Pro-
grammed in PHP (Hypertext Preprocessor programming language) it sup-
ports different SQL (Structured Query Language) databases, of which the
research used the variant MySQL for the project. However, MediaWiki is
not merely a database, but is a document-oriented VCS based on the
notion of linked pages. MediaWiki pages are dynamically transformed into
html pages as they are authored online and MediaWiki places a strong
emphasis on the collaborative creation and maintenance of page content,
with a range of user rights applicable to a given user account by theMedia-
Wiki administrator. The administrator provides different degrees of access
and control to the system, such as the capacity to create, edit and delete
pages, or amend the broader structure of the online interface through, for
example, the provision of information presented on the sidebar. Each
page contains its own discussion tab, as well as the complete edit history
of the page, consisting of all time-stamped edits performed over time,
and which are comparable in a manner similar to Unix’ diff.21 Beyond this,
there is no branching as in having multiple concurrent versions or splitting
capabilities for a page—the latest canonical version of a page is presented
by default to the user, using a custommark-up syntax called ‘wikitext’. More-
over, the open-source nature ofMediaWiki has allowed for an ecosystem to
develop where a panoply of extensions are available, providing a range of
functionalities beyond those of the base package.

It is worth noting that MediaWiki versions its pages differently than files
that are imported to it such as images and videos. Pages are entries
stored in its SQL database as wikitext and digital files stored in a structured
directory of uploaded files. An imported file cannot be changed within
MediaWiki. If the file has to be changed, it has to be done outside of Med-
iaWiki and then re-imported. Consequently,MediaWiki replaces the old file
with the new file and the old file is kept as the old version and can still be
accessed after it has been updated.

Git, on the other hand, is a VCS that works directly with the files and direc-
tories of a given computer’s operating system. Git is a collection of Unix-
type programs written in the C programming language. These programs
need to be installed locally on a given computer and are usually evoked
using the computer’s command-line interface (CLI). There exist graphical
user interfaces (GUI) for Git, though the team used the CLI for the exper-
iments. A directory of a computer can be put under version control at any
time, meaning that all the files and folders the directory contains will be
tracked over time by Git from its initial state when the directory is first
put under version control. Git keeps track of the content of files and when-
ever a file is changed, the system makes a version of it and records its state
—the version—in a local repository that resides in the same directory as the
one under version control (in a special ‘.Git’ subdirectory). In this way, Git
works directly on a given archive’s files and their local file system, unlike
MediaWiki which constructs a database of the archive’s page content on
a centralised server.

Matthew Fuller et al. suggested that Git tracks changes through a ‘Big
Diff’, that is, accounting for versions of files by only tracking differences
between them in a similar way to the diff and patch Unix commands.22 As
mentioned above, MediaWiki’s internal versioning system is indeed
based on a diff and thus stores differences, or deltas, in its database.23

Yet, contrary to what Fuller et al. suggest, Git takes an initial ‘snapshot’
and not a diff of the state of the archive’s directory recursively—that is,
recording all the content of files and subdirectories it may contain—which
subsequent states of the directory will be compared to. This difference
between each system is made explicit in Git’s official manual:

21 The Open Group, ‘diff’, in The Open
Group Base Specifications Issue 7,
2018 edition (IEEE, 2018), http://pubs.
opengroup.org/onlinepubs/9699919799/
utilities/diff.html (accessed 22 Septem-
ber 2018).

22 Cf. Fuller et al., ‘Big Diff, Granularity,
Incoherence, and Production’.

23 ‘Manual: MediaWiki Architecture’,
MediaWiki, https://www.mediawiki.
org/wiki/Manual:MediaWiki architec-
ture (accessed 23 September 2018).

Archiving complex digital artworks 7

Journal of the Institute of Conservation 2019

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
https://www.mediawiki.org/wiki/Manual:MediaWiki
https://www.mediawiki.org/wiki/Manual:MediaWiki

‘The major difference between Git and any other VCS (Subversion and friends
included [i.e. MediaWiki’s internal versioning model for pages]) is the way Git
thinks about its data.… These other systems… think of the information they
store as a set of files [or pages] and the changes made to each file over time
(this is commonly described as delta-based version control). Git doesn’t think
of or store its data this way. Instead, Git thinks of its data more like a series
of snapshots of a miniature filesystem.’24

But what does this ‘snapshot’ method mean? Simply put, Git records the
content of files as versions where the whole content of the file is stored,
rather than solely recording the parts (deltas) that have changed between
earlier and later versions. However, Git does use a custom ‘delta com-
pression’ when compressing or packaging its repository, but only when
the repository size exceeds a certain pre-configured threshold or, alter-
natively, when peer-to-peer repositories need to be synchronised over
a network. By default, Git does not delta compress its objects—it
works with ‘loose objects’ in Git’s jargon—unlike MediaWiki, which
does so necessarily each time a page is changed. Also it is worth
noting that Git works with the content of files rather than files as such.
It indexes the content of files using cryptographic checksums, or
hashes, and abstracts away from its own internal repository represen-
tation the peculiarities of the underlying file system the files are
embedded in. In other words, Git’s internal repository is a miniature
file system that is indexed by content-based cryptographic ciphers. Git
can thus be framed as a content-addressable repository rather than a
file-oriented VCS.

2 Synchronisation
Another important aspect of versioning is synchronisation. Important differ-
ences exist here between Git and MediaWiki. Git is a peer-to-peer system
whereasMediaWiki is modelled as a client–server one. The main difference
between these models lies in the fact that a client–server architecture is a
centralised model that keeps a master copy of a repository or archive on
a single server. All clients are synchronised through this server, meaning
that each client/collaborator needs to log into the centralised server
using their respective credentials in order to contribute changes to that
master. The model does not allow for ‘disconnected operations’ as clients
need to remain online at all times in order to be synchronised with the
master copy of the centralised server.

Instead of having clients commit changes to a central remote repository,
in Git changes are committed to a self-contained local repository. These
changes are termed ‘commits’ in Git’s nomenclature. There is no hard dis-
tinction between clients and servers involved: servers are clients and clients
are servers, meaning that any collaborator having a copy of a repository can
share it locally with anybody else of interest. There is no need to be con-
nected to the internet and no a priori credentials are required to share repo-
sitories. Moreover, when a repository is first copied from a peer in an
operation also known as ‘cloning’ a repository, the entire version history
of the repository is cloned as well, making every cloned instance of a repo-
sitory a coherent one and an actual back-up of the archive as a whole. When
changes are made to a peer’s local repository in isolation, these can be
committed to the peer’s local repository first and then ‘pushed’ to
another peer’s repository over a shared local network. This operation is
called a ‘push request’. Alternatively, a peer can ‘pull’ committed
changes from another peer’s local repository in what is called a ‘pull
request’. This peer-to-peer push/pull logic is how Git synchronises peers’
archives with one another in a distributed manner. It is important to note
that this logic is a combinatorial one, that is, the potential of distributed

24 Chacon and Straub, Pro Git, 13–4.

8 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

repositories to produce new states, and thus new versions, grows exponen-
tially as the number of peers increases.

MediaWiki provides the possibility for exports of the whole database, yet
it lacks a synchronisation mechanism between various instances of a single
database.

One last difference to highlight is how ‘commits’ are handled in both
systems. With Git, a user can decide which changes and how many
changes he/she commits at once. In other words, Git changes can be
‘cherry-picked’ within files themselves—changes at the word level, for
instance—and also changes within different files can be grouped as a
single commit. With each commit, the user is forced to add a commit
message in order to explain the reason for the commit. With MediaWiki,
changes can only be saved per page or per page section and changes on
a page are saved as a group, when the ‘save changes’ button is clicked
on the MediaWiki interface. These group changes are visible as a version
under the ‘view history’ tab of the page.

In fact, a thorough comparative analysis of what ‘versioning’ means to
both systems, and more importantly, how it is effected operationally,
would require an entire article of its own. Yet, as an attempt to push
this research forward, we describe preliminary research into the selected
two VCSs in what follows, and discuss possible implications for archival
practices that centre on the documentation of networked and processual
artworks.

Experiments and findings
As mentioned, to focus the team’s experiments on the 10GB of data in
the UBERMORGEN archive, we selected the oldest directory of the
archive ‘CHINESE_GOLD_2006’. The aim of the experiment was to evaluate
the affordances of Git/GitLab against MediaWiki for the preservation and
presentation of what is a complex digital artwork. Four aspects were
compared.25

1) File and storage management: does the platform support the archiving
and access to digital artwork? How convenient and adaptable is the
data/file ingestion, operations and retrieval of files? Can it handle all
files with respect to format and size? Can it display encoded files such
as images and videos? How portable is the system?

2) Metadata and provenance: how does the system handle provenance
and metadata? Does it preserve the original file name, creation date
and path? Does it display metadata produced by recording devices,
such as EXIF for cameras and audio recorders? Does it record infor-
mation about who manipulated the file, when and why? Does it keep
versions?

3) Context, presentation, curation: how does the platform support the
exhibition and display of the artwork itself? How does it prepare archives
for this? Does it provide the means for relating and assembling items and
their associated documentation?

4) Collaboration, usability: how does the platform accommodate users?
What user-roles does it offer? How does it support interaction and col-
laboration between users? Is the system accessible in terms of economic
and technical engagement? Is it hard to maintain?

Other aspects that need further research are beyond the scope here but
include issues around file fixity, data integrity and interoperability, and inte-
gration with other systems.

25 The aspects selected all allude to the
features described in the model for an
Open Archival Information System
(OAIS). The package consists of
‘Content Information’ (data object),
further described by ‘features that
determine information integrity and
deserve attention for archival purposes’,
namely reference, provenance, context
and fixity. See Christopher A. Lee,
‘Open Archival Information System
(OAIS) Reference Model’, in Encyclope-
dia of Library and Information Sciences,
Third Edition, ed. Marcia J. Bates and
Mary Niles Maack (Boca Raton, FL:
CRC Press, 2009), 4026–7.

Archiving complex digital artworks 9

Journal of the Institute of Conservation 2019

1 File and storage management
1a MediaWiki
While it is primarily a text-oriented platform, MediaWiki is capable of
storing files ingested into the system through the process of uploading.
Files are stored in a dedicated directory structure where they can be
accessed under their assigned URLs that contain their original file names.

This functionality is geared towards archiving individual files with the
purpose of embedding them in content pages. However, dealing with
UBERMORGEN’s archive of hundreds of files, the first challenge was to
optimise the ingest procedure. There is no means in the base package
to upload multiple files at once so a partial resolution to this was by instal-
ling the ‘UploadWizard’ extension that allows for batch uploading of files
as well as batch editing of their metadata by changing the pre-sets in
MediaWiki’s ‘LocalSettings.php’ configuration file. The extension
speeds up the process of ingestion, but does not support uploading
batched folders—each folder has to be uploaded separately. Problems
occur when files that have the same name need to be uploaded from
different folders because the system is only able to register files with dis-
tinct names.

MediaWiki also refused to accept certain file types as for security
reasons the system keeps two blacklists to prevent users from uploading
executable files (i.e. as an anti-spam precaution). To include certain file
types as accepted formats, the blacklists have to be overridden manually
in the configuration file, and to allow for the upload of otherwise unsup-
ported file types, the range of accepted file formats also has to be recon-
figured.26

The version history of an imported file is available in the ‘File history’
section and similarly to the text-based VCS in Git, the comparison of
encoded files such as images and binary formats cannot be directly visual-
ised. The file history merely shows that one image has been replaced with
another and provides access to the former versions.

MediaWiki allows for the automatic previewing of images and videos on
the respective ‘File’ pages for images and on request through file-embeds
within the wiki pages. While JPEG images were rendered successfully,
TIFF images were not at the first attempt as another setting in the con-
figuration file needs to be adapted in order to render TIFFs.27 TIFF
images are important as TIFF is an archival format in contrast to JPEG.
In order to enable the embedding of videos, the extension ‘EmbedVideo’
was installed. It is important to mention that these embeds have to be
arranged manually.

Besides these shortcomings, the storage of data on a centralised server is
suboptimal in preservation terms, particularly when compared to the dis-
tributed nature of Git. When following the digital preservation principle
of LOCKSS (Lots Of Copies Keep Stuff Safe), the MediaWiki server would
need to be cloned at different places. At the time of writing, an extension
that would allow the cloning of parts of aMediaWiki server to a client com-
puter appeared unavailable, but the team felt this would eventually change
and as such an extension will be made.

1b Git
The first part of experimenting with Git was to put the entire content of the
archive in a repository (Fig. 3). Git was originally created for code manage-
ment, that is, essentially text files, which tend to be smaller than image and
video files. When images and videos are managed with Git, each time a file
is changed, a new version of the file is stored. In this way, the data volume
quickly expands. As the UBERMORGEN archive contained rather large files
(*.zip, *.mov, iMovie source projects, etc.) the team had to use a special Git

26 See https://www.mediawiki.org/
wiki/Manual:Configuring_file_uploads#
Configuring_file_types (accessed 23
September 2018). For blacklists and
allowing for the upload of otherwise
excluded executables, see https://www.
mediawiki.org/wiki/Manual:$wgFileBlack
list and https://www.mediawiki.org/wiki/
Manual:$wgMimeTypeBlacklist (both
accessed 22 September 2018).

27 TIFF images can be rendered after
setting $wgTiffThumbnailType variable
in the config file (LocalSettings.php)—
see https://www.mediawiki.org/wiki/
Manual:$wgTiffThumbnailType
(accessed 22 September 2018).

10 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

https://www.mediawiki.org/wiki/Manual:Configuring_file_uploads#Configuring_file_types
https://www.mediawiki.org/wiki/Manual:Configuring_file_uploads#Configuring_file_types
https://www.mediawiki.org/wiki/Manual:Configuring_file_uploads#Configuring_file_types
https://www.mediawiki.org/wiki/Manual:%24wgFileBlacklist
https://www.mediawiki.org/wiki/Manual:%24wgFileBlacklist
https://www.mediawiki.org/wiki/Manual:%24wgFileBlacklist
https://www.mediawiki.org/wiki/Manual:%24wgMimeTypeBlacklist
https://www.mediawiki.org/wiki/Manual:%24wgMimeTypeBlacklist
https://www.mediawiki.org/wiki/Manual:%24wgTiffThumbnailType
https://www.mediawiki.org/wiki/Manual:%24wgTiffThumbnailType

subsystem called Large File System (LFS).28 This allows large files to be
uploaded to a specific remote LFS repository and modifies the Git reposi-
tory so that references to the file instances will be replaced by pointers to
the remote LFS server. In this way, when the repository is cloned or when
changes are fetched from it, Git treats LFS pointers in a distinct way and
will not, for instance, fetch the whole content of these files from the LFS repo-
sitory but only copy their pointers, thus speeding up the cloning process. For
the purpose of the project, this made sense since there were no changes to
be made to the content of the files as such. LFS works with file extensions,
and after an analysis of the files present in the archive, the LFS was instructed
to track the following extensions: *.zip, *.mov, *.tif, *.png, *.jpg, *.jpeg,
*.JPG, *.mp4, *.iMovieProj and *.psd. These were written to a special ‘.gitat-
tributes’ configuration file on the local repository while it was being created.
When the repository was finally configured with LFS on one of our machines,
Git pushed it to the GitLab hosting platform so that it could be shared
amongst the team. Once in GitLab it was tagged with version ‘v0’ designat-
ing the unmodified state or version of the archive.

In short, to summarise the process of creating the Git/GitLab repository:

(1) the entire ‘CHINESE_GOLD_2006’ directory was put under version
control using several Git and LFS commands;

(2) this initial repository created on a local computer was pushed to a
central repository on GitLab’s servers;

(3) this initial version of the repository on GitLab was then cloned by others
on their own computers.

Several observations should be noted here. The team used GitLab as a
centralised server in order to synchronise our versions of the Git repository.

Fig. 3 Artists’ file archive on GitLab.

28 See ‘Git Large File Storage’, https://
git-lfs.github.com/ (accessed 24 April
2018).

Archiving complex digital artworks 11

Journal of the Institute of Conservation 2019

https://git-lfs.github.com/
https://git-lfs.github.com/

At first sight, this might seem to imply that Git and MediaWiki have the
same centralised storage model. This is not the case as we could have syn-
chronised our repository in an ad-hoc fashion using only Git’s push/pull
functionality between our respective machines. We decided to use
GitLab’s centralised services for convenience during the first 2017 work-
shop. Moreover, as explained above, every cloned copy of the initial
version ‘v0’ could be ultimately shared on other hosting platforms or
even exchanged using external storage devices, such as usb drives, while
still being able to function with our respective versions, since every
cloned Git repository contains locally the entire version history of the repo-
sitory, regardless of the hosting service one might use.

In terms of interface for the viewing content online, it was clear when we
pushed the initial repository to the GitLab platform that it would not allow
direct viewing of all audio/visual documents of ‘CHINESE_GOLD_2006’.
Unlike MediaWiki, GitLab restricts the viewing of large images and videos
to a maximum of 50MB at the time of writing and does not provide function-
ality for viewing file types that are not supported by HTML standards (such
as TIFF or iMovie projects). Instead, GitLab offers the downloading of such
files for viewing locally. This is typical of Git hosting platforms as they are
designed for viewing text-based files—usually source code—and not to
interpret a file’s content such as instruct a browser to display the content
of a *.jpeg.

2 Metadata and provenance
2a MediaWiki
Aside from URLs of raw files, at the time of the upload,MediaWiki automati-
cally creates a dedicated page for each file under another assigned URL.
This page features file preview, text description, file history, a list of
pages linking to the file, EXIF data (for image and audio files), and a sub-
page for discussion. To distinguish file pages from content pages, the
system maintains a dedicated namespace, ‘File’—it can be renamed in
the configuration file—under which they are accessed.

The time stamp MediaWiki produces for files represents the time
when a file was uploaded to the server. However, digital archiving
requires the preservation of the creation and modification date. In
addition, the file path of individual files is lost with the upload as well,
as although MediaWiki does provide a general list of all uploaded
files, its essential structure is flat (i.e. non-hierarchised) so that archived
files are treated as if on the same level (Fig. 4). In other words, Media-
Wiki provides no straightforward way to maintain the folder structure of
the materials to be archived. Relations between files—and pages—are
dependent on the placement of information and links within their
description text. The team considered preserving the original file paths
by entering them into the description for each file, however this would
be highly time consuming. A more optimal, albeit still not ideal, work-
around was to include paths within file names ahead of their upload,
for which we wrote a Python script.29

If a user wishes to browse through a folder structure of an uploaded
artist’s archive on MediaWiki, with or without file previews, it has to be
reproduced manually. A more convenient option is to employ the extension
‘Semantic MediaWiki’ that allows for greater categorisation and automatic
querying of data. But even in this case, the relevant metadata need to be
pre-entered on the respective pages of the files. ‘SemanticMediaWiki’ pre-
sents something of a double-edged sword: while the use of its properties
and values enables the consolidation of data, this requires a strong organ-
isation and mutual understanding on the part of its users, otherwise the cat-

29 The script is available at: https://multi
place.org/cada/index.php/Filenaming
system (accessed 3 March 2019).

12 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

https://multiplace.org/cada/index.php/Filenamingsystem
https://multiplace.org/cada/index.php/Filenamingsystem
https://multiplace.org/cada/index.php/Filenamingsystem

egorisation of data could become too chaotic and too meaningless for the
user community.30

MediaWiki automatically displays the EXIF metadata as created by
cameras and recorders of images and audio recordings. It also displays
the name of the user who uploaded a file and it has a section on the licen-
sing of an uploaded file.31

2b Git
Since Git archived the entirety of ‘CHINESE_GOLD_2006’, all file paths
were retained during the creation of the repository, its subsequent upload-
ing to GitLab and cloning to any peer computers. On GitLab, one can
browse the archive in a similar manner as one would on a computer, the
file path of the files and directories being the same. The URLs produced
by GitLab are permanent and follow the path structure of the archive as
well. In fact, like MediaWiki, GitLab produces two URL’s for each file, one

Fig. 4 Artists’ file archive on MediaWiki.

30 Engel and Wharton came to similar
conclusions after testing different
open-source software platforms to
develop information resources about
artists in their project, The Artist
Archives Initiatives. Engel and
Wharton, ‘Managing Contemporary Art
Documentation’.

31 Metadata handling depends on the
upload tool used and one of the difficul-
ties heritage institutions encounter in
using MediaWiki is the mapping of the
metadata of the institution to the meta-
data of the upload tool. See Jonathan
Morgan, et al., ‘Research: Supporting
Commons contribution by GLAM insti-
tutions’, Wikimedia Meta-Wiki, 10

Archiving complex digital artworks 13

Journal of the Institute of Conservation 2019

of which is the link for viewing the file reference throughGitLab’s web inter-
face and the other the address of the raw file on GitLab’s servers.

The GitLab interface shows metadata that was produced by Git rather
than metadata about the files themselves. That is, rather than displaying
each file’s creation and modification dates, it shows when they were
added to the Git repository (relative to the time of viewing) and as part
of which commit. As explained earlier, when changes are made to a repo-
sitory, these need to be committed to the repository in order to take
effect and for Git to version the archive. Each commit metadata consists
of the username of the user who commits changes, a commit message
and an identification cypher for the commit itself. This is mainly what
GitLab shows on its web interface.

However, this information alone was not enough for the purpose of creat-
ing a digital archive. The team needed to extract as much metadata as poss-
ible for each file so as to display information about the digital object itself
rather than just its provenance.

In order to do this Git can be configured to extract files’ EXIF metadata
using the program ‘ExifTool’.32 For each file containing one of the listed
extensions, Git produces an additional text-based metadata file containing
the EXIF information of the file. This metadata file is then added to the repo-
sitory to be tracked by Git so that when a given file is changed and com-
mitted to the repository so does its accompanying EXIF metadata file.

While this built-in approach of producing metadata seemed promising, it
did not offer us the means to explore the raw, unsorted archive in a way we
deemed optimal for our purpose. As explained, the team wanted to
produce an index of all files in the archive along with their respective meta-
data in a presentable format that can be viewed via a web browser. We thus
decided to write our own script (in Python) to excavate such information.
The approach taken was to write the script so that it recursively crawls
every directory and subdirectory of the archive, listing all the files they
contain and producing a record of each file’s metadata in an HTML
format. We used the ‘Hachoir’ library to parse and read the files’ metadata
such that we were not only able to read standard metadata types (MIME,
EXIF, etc.) but also proprietary ones (Microsoft, Apple, Adobe, etc.).33

By crawling the archive with our script, we amassed a wealth of meta
information on the dates, provenance, types and formats of each file; a
type of forensic reading that enabled us to trace the editing lineage of
artefacts involved in the production of the various Chinese Gold
exhibits (Fig. 5).

For example, the team rediscovered the originalWorld of Warcraft snap-
shots/screenshots for the ‘Belgrade Series’—taken in mid-2006 with an
Olympus camera and further edited with Adobe Photoshop CS on an
Apple Macintosh and transcoded from an original jpeg format to tiff.
While we could have deciphered Chinese Gold’s digital artwork editing
lineage directly from UBERMORGEN’s ‘CHINESE_GOLD_2006’ organis-
ation of the files—the directory names in the original archive being evoca-
tive enough to understand—these experimental forensic readings enabled
us formulate a promising archive-agnostic method of extracting valuable
archival information from ‘unsorted’ sets of digital files, meta information
that would have otherwise remained mute in Git/GitLab.

3 Context, presentation, curation
3a MediaWiki
To explore the presentation possibilities of MediaWiki the team set out to
compile the data and documentation of two distinct iterations of Chinese
Gold—‘Belgrade Series’ (2007), a series of eight images exhibited as a sli-
deshow, and Chinese Gold (2010), a single-channel video and two images

December 2018, https://meta.
wikimedia.org/wiki/Research:
Supporting_Commons_contribution_
by_GLAM_institutions (accessed 23
January 2019)

32 ‘Exiftool’ (version 11.10), 2018,
https://www.sno.phy.queensu.ca/~phil/
exiftool/ (accessed 23 September 2018).
See also, Chacon and Straub, Pro Git,
347.

33 ‘Hachoir’ (version 3.0a2), https://
hachoir.readthedocs.io/en/latest/
(accessed 5 March 2019).

14 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

https://meta.wikimedia.org/wiki/Research:Supporting_Commons_contribution_by_GLAM_institutions
https://meta.wikimedia.org/wiki/Research:Supporting_Commons_contribution_by_GLAM_institutions
https://meta.wikimedia.org/wiki/Research:Supporting_Commons_contribution_by_GLAM_institutions
https://meta.wikimedia.org/wiki/Research:Supporting_Commons_contribution_by_GLAM_institutions
https://www.sno.phy.queensu.ca/~phil/exiftool/
https://www.sno.phy.queensu.ca/~phil/exiftool/
https://hachoir.readthedocs.io/en/latest/
https://hachoir.readthedocs.io/en/latest/

exhibited as an installation. Each iteration was given a content page that fol-
lowed a distinct presentation method.

With the directory ‘Belgrade Series’ the team attempted to make a
straightforward representation of its files, representing its sub-folder struc-
ture as different sections of the page. This meant structuring the web page
so as to reflect the different versions of the same series of eight images: the
listing of TIFF files used in the exhibition at the REX space in Belgrade; the
listing of JPEGmaster files; and the presentation of the images by the artists
on their public website (as of 2018).34

The team then used the data from the exhibition of Chinese Gold at
NIMk, Amsterdam in 2010. We emphasised the collation of a wider range
of information regarding the exhibition from a multiplicity of sources
absent from the artists’ archive. Rather than listing the artwork’s media
components on the page by hand, we used SemanticMediaWiki to link rel-
evant media files to the exhibition page.

In this way, semantic relations can be created between wiki pages,
whether they represent exhibitions, components, documents or other
files. The relations can be subsequently queried and the results displayed
along with other content on the wiki. Besides this, MediaWiki allowed the
smooth embedding of images and videos within content pages. Metadata
and further information about respective files were available on separate
pages accessible through a simple click on a media file.

Fig. 5 Forensic analysis of the files in Git repository. Courtesy of David Gauthier.

34 See https://multiplace.org/cada/
index.php/Belgrade_Series and https://
multiplace.org/cada/index.php/NiMK_
exhibition (accessed 17 December
2018).

Archiving complex digital artworks 15

Journal of the Institute of Conservation 2019

https://multiplace.org/cada/index.php/Belgrade_Series
https://multiplace.org/cada/index.php/Belgrade_Series
https://multiplace.org/cada/index.php/NiMK_exhibition
https://multiplace.org/cada/index.php/NiMK_exhibition
https://multiplace.org/cada/index.php/NiMK_exhibition

3b Git
Certain contemporary artworks adapt to their context and their curation
becomes part of the work itself. With other contemporary works, the col-
lection process is part of the work.35 Chinese Gold is a bit of both. As a
system, Git provides the basic infrastructure to collect and organise a
project such as Chinese Gold and its curatorial context without imposing
a rigid classification system. By facilitating the artwork’s analysis and
documentation, Git can, albeit indirectly, support the exhibition of the
artwork. The two ‘exhibit’ branches of our GitLab repository were
created with this in mind and put forth an exhibition-focussed order of
the archive that we could collectively organise and assess in a decentra-
lised manner.

As the team were working on these branches, and in tandem with the
work that was being done on MediaWiki, it became clear that a descriptive
overview of all the files present in the archive would speed up the means by
which we were able to locate and decide upon which documents to con-
sider for a potential exhibition and which ones to discard. In our case, the
Chinese Gold files were legibly sorted into directories labelled according
to the various projects’ exhibits, so we were able to manually locate the art-
work’s source material for each exhibit without much difficulty. It is impor-
tant to understand that this may not always be the case. As we are
interested in working with entire ‘unordered’ working copies of digital art
archives, which may include source material of artworks—source code,
Photoshop projects and so forth—as well as preliminary research materials,
spreadsheets of budgets, various edited versions of artworks, etc., it may be
necessary to devise algorithmic means to analyse the content of archives
automatically. This could aid the descriptions of the types, assets and
provenance of their constituting entities.

To see how this could work we developed the ‘experimental’ branch
where the Python script described earlier was placed. This script recursively
crawls every subdirectory of the root directory (‘CHINESE_GOLD_2006’)
and produces a single html file where all the files of the archive are listed
along their respective paths, their metadata and their content (if the
browser allows its display). This html index gives an overview of the
content of the repository as a flat list of entities with metadata descriptors.
It thus makes it easy to glance at the repository’s content to identify
elements that might be of interest. As stated above, this scripted automatic
reading of the archive is a promising avenue for the research of digital
archive-agnostic methods to extract archival information from ‘unsorted’
sets of ‘unknown’ digital files.

By interpreting the evolution of the artwork and by understanding
other stakeholders’ contributions, as well as the documentation of previous
exhibitions, curators can make well informed decisions about the next
exhibition they are working on. The Guggenheim Museum’s ‘Iteration
Report’ for installation artworks fulfils a similar, but narrower, purpose: it
documents the artwork’s installation at each exhibition and adds to the
documentation of the exhibition history.36 Yet with digital artworks and
Git, the artwork itself and its documentation can co-exist as part of the
same multi-faceted archive, whose multiple variations can address the
needs of curators, archivists and artists themselves.37

4 Collaboration, usability
4a MediaWiki
AMediaWiki is made to be adjusted and populated entirely by users. Editors
create menu structure, draft templates for articles and outline semantic
relationships. The number of users is not restricted by design. To maintain
the platform, dedicated editorial work is needed, albeit that compared to

35 See, for example, Martha Buskirk,
The Contingent Object of Contempor-
ary Art (Cambridge, MA: MIT Press,
2003), 162.

36 Guggenheim Museum, ‘Conserva-
tion Department. Iteration Report’,
2012, https://www.guggenheim.org/wp-
content/uploads/2015/11/guggenheim-
conservation-iteration-report-2012.pdf
(accessed 13 December 2018).

37 In terms of curation of digital art-
works, Git’s own ability to be pro-
grammed and scripted as a system to
support various levels of automation
cannot only be used in order to add
context and functionality to the reposi-

16 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

https://www.guggenheim.org/wp-content/uploads/2015/11/guggenheim-conservation-iteration-report-2012.pdf
https://www.guggenheim.org/wp-content/uploads/2015/11/guggenheim-conservation-iteration-report-2012.pdf
https://www.guggenheim.org/wp-content/uploads/2015/11/guggenheim-conservation-iteration-report-2012.pdf

other similar systems it can be more evenly distributed. Individual editors
can self-appoint themselves to oversee creation of a new artwork entry
and patrol respective changes.38

A built-in multi-layered system for tracking changes further aids collabor-
ation. MediaWiki offers an overview of recent changes on the platform in
general and a list of newly created pages.39 The revision history of each
page provides an overview of who has contributed, when and why. Visual
diffs system allows for visual comparison between various versions of
a page.

MediaWiki is web-based, made for remote access. The ease of access
through a web browser means that users do not need any special software
installed. People can use and contribute to a platform using any devices
with internet connection, in offices, galleries and elsewhere. It is worth
noting though that upgrading the system is moderately challenging in
comparison to other systems of its scale.

4b Git
As mentioned earlier, the initial version of the archive was pushed toGitLab
with the version ‘v0’ tag designating the unmodified state as provided to us
by UBERMORGEN. After this version was cloned on various computers, the
team created several branches in which the content of the repository and its
file structure were modified in different ways. Operationally speaking,
‘branching’ denotes the creation of a ‘sandbox’ copy of a given parent
branch of the repository, where changes can be applied to the new
branch without propagating to the parent branch it initially came from.
Typically, aGit repository contains many branches from which collaborators
work. Changes to branches can be made in parallel without interfering with
one another and branches can be merged together at any stage (if no insur-
mountable conflict between them arises). In Git, branches work as a sort of
genealogical lineage binding all the actual—and potential—strands of a
given archive; they produce a tree-like graph where each trajectory
denotes a state of the archive. In our case, we produced three branches,
namely two that were used to re-order the files according to Chinese
Gold’s various exhibits (in a similar manner to MediaWiki’s ordering men-
tioned above), and another experimental branch where the Python scripts
we devised were added to the archive to execute a custom digital forensics
of the Chinese Gold files themselves. It is important to note that branching
does not occur online using GitLab but locally using Git on a cloned version
of the initial archive.

A preliminary conclusion
Common museum management systems do not handle complex digital
artworks well. By using Git and MediaWiki as collaborative archival and
curatorial systems for artworks instead of their originally intended
support for software development and documentation, we explored
these tools from a different point of view. The following aspects were
considered for studying the systems: file and storage management, meta-
data and provenance, context, presentation, curation, collaboration and
usability.

Both systems are capable of supporting the archiving and access to
digital artwork, albeit with limitations. File upload is not straightforward
for certain file types and for large files in the case of MediaWiki. Both Med-
iaWiki and Git produce unique web addresses for each file but previews of
certain files such as TIFF images, videos and large files are not supported by
Git, while on MediaWiki they have to be manually configured. With Git,
content remains available offline as the repository is usually cloned to

tory but could also be a useful feature of
algorithmic curation as such. These are
avenues that were not directly explored
as part of our current experiments but
are nonetheless interesting trajectories
the research points to.

38 See https://www.mediawiki.org/
wiki/Help:Patrolling (accessed 23 Sep-
tember 2018).

39 See https://www.mediawiki.org/
wiki/Help:Tracking_changes (accessed
23 September 2018).

Archiving complex digital artworks 17

Journal of the Institute of Conservation 2019

https://www.mediawiki.org/wiki/Help:Patrolling
https://www.mediawiki.org/wiki/Help:Patrolling
https://www.mediawiki.org/wiki/Help:Tracking_changes
https://www.mediawiki.org/wiki/Help:Tracking_changes

one’s own personal computer. MediaWiki is a client–server system and it is
painstaking to replicate the content of any instance.

Since neither MediaWiki nor Git have been developed as archival
systems, they lack some of the provisions for metadata and provenance.
Unlike MediaWiki, Git preserves file paths of uploaded files, making it con-
venient to navigate file structures, but neither platform has the means to
preserve provenance information such as the original file creation dates.
While Git allows a rearrangement of files without having to change the
original directory structure, MediaWiki lacks features for operations on
file directories.

The systems are capable of indirectly supporting the exhibition of a
complex digital artwork. The text-oriented MediaWiki not only allows for
additional descriptions but also for content presentation and linking that
can be particularly useful to understand the background and context. It
offers a rich framework for creating composite pages that may bring together
artwork documentation and source files in an unambiguous way. The file-
oriented Git, on the other hand, allows one to branch the artwork and
create new folders, so that the artwork components and its documentation
can co-exist as part of the same multi-faceted archive, and whose multiple
variations can address the needs of curators, archivists and artists themselves.
A Git repository can even serve as the base for algorithmic curation.

From the outset, both MediaWiki and Git have been developed as
systems for collaboration facilitated by the internet. However, their success-
ful adoption requires resolution and patience. As shown above, the use of
MediaWiki, with its rich syntax and many extensions, may be as demanding
as the use of Git that needs a good faculty of abstraction to understand the
collaboration processes.

Since archiving and documenting often overlap, a system which would
build upon both platforms would be an ideal version control system (VCS)
for the collaborative archiving of complex digital artworks. Such a system
should take the following into account:

1) File and storage management. The VCS must be capable of handling all
files irrespective of their format and size. It should offer preview of files
including images and videos. It is important that the system is easily por-
table by way of cloning. Cloning follows the idea of LOCKSS (Lots Of
Copies Keep Stuff Safe) and also prompts users to experiment safely
with sandboxed copies of archives. If technically feasible, the VCS
might have a visual diff in place to allow comparing changes in the
content of images or even multimedia files.

2) Metadata and provenance. The VCS must preserve the creation date,
metadata and file path for each file at the moment of its ingest and after-
wards. It should support operations on file structures such as replication
and display. It has to record changing versions of a file and allow linking it
to other elements.

3) Context, presentation, curation. The system should feature a framework
for bringing source files and documentation together to present the
background and context of the artwork.

4) Collaboration, usability. Rather than serving a general purpose, the
design of the VCS must take into account the expertise of stakeholders
in the process of archiving art and adapt its interface and functionality
accordingly.

Of course, many questions remain that call for further exploration and
research. How to make MediaWiki and Git/GitLab work together? Would
it make sense to limit the use ofGit to being a file repository andMediaWiki
a documentation tool? Furthermore, the current work around WikiBase

18 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

and WikiData might offer new insight and usage of version control that
could be particularly beneficial for sustainable archiving of complex
digital artworks.40

With regard to our case study, considering that a sizeable portion of the
content used for Chinese Gold has been appropriated by UBERMORGEN
from other sources, a collaborative and granular continuation of the project
supported by a VCS would allow the files to remain in the same media-scat-
tered form in which the artists found them online or offline. Archiving such art-
works by way of a granular, open-source versioning system suggests a
continuation of UBERMORGEN’s artistic philosophy and intent well beyond
their lifespan: a philosophy respecting the democratisation of cultural knowl-
edge, challenging existing intellectual property regimes, with the prioritisation
of context over concept, and eliminating the need for an established or fina-
lised conceptualisation of an artwork.

ORCID
Dušan Barok http://orcid.org/0000-0002-0691-0748
Julie Boschat Thorez http://orcid.org/0000-0002-8979-987X
Claudia Roeck http://orcid.org/0000-0003-2612-5672

Acknowledgements
Dušan Barok’s and Claudia Roeck’s participation in the research was
realised in the framework of the Marie Skłodowska-Curie Innovative
Training Network ‘New Approaches in the Conservation of Contem-
porary Art’ (NACCA), funded by the European Union H2020 Pro-
gramme (H2020-MSCA-ITN-2014) under Grant Agreement n°
642892. The authors would like to thank UBERMORGEN for gener-
ously providing us with their archive as well as Jim Wraith, Judith
Hartstein, Larissa Tijsterman and Megan Phipps who all participated
in the ‘Collaborative Archiving of Digital Art’ workshop in 2018—we
thank them for their valuable input and contribution to the thinking
about the issues and conclusions outlined in this article. We would
also like to thank Lozana Rossenova who read and commented on
earlier versions of the article.

Funding
Dušan Barok’s and Claudia Roeck’s participation in the research was
realised in the framework of the Marie Skłodowska-Curie Innovative
Training Network ‘New Approaches in the Conservation of Contem-
porary Art’ (NACCA), funded by the European Union H2020 Pro-
gramme (H2020-MSCA-ITN-2014) under Grant Agreement n°
642892 (H2020 Marie Skłodowska-Curie Actions).

Résumé
«Archivage des œuvres numériques complexes»
La transmission de la documentation des modifications appor-
tées à chaque présentation d’une œuvre d’art et des motiv-
ations pour chaque exposition est importante pour la
préservation à long terme, pour la nouvelle exposition et la
compréhension future de l’œuvre. Cependant, il est générale-
ment reconnu que l’archivage numérique existants et les sys-
tèmes de documentation utilisés par de nombreux musées ne
conviennent pas pour des œuvres numériques complexes. En
recherchant une approche qui peut être facilement adaptée, parta-
gée et adoptée par d’autres, cet article se concentre sur les alterna-
tives en open source qui permettent également un travail
collaboratif pour faciliter les échanges et la modification des infor-
mations. En tant qu’équipe interdisciplinaire de restaurateurs,
chercheurs, artistes et programmeurs, les auteurs ont entrepris d’ex-
plorer et de comparer les fonctionnalités de deux systèmes dotés du
contrôle de version: MediaWiki et Git. Nous réfléchissons sur leurs
éléments techniques, leurs qualités et leurs inconvénients pour

archiver des œuvres numériques complexes, tout en examinant le
potentiel qu’elles offrent pour les flux de travail collaboratifs.

Zusammenfassung
„Die Archivierung komplexer digitaler Kunst“
Die Übermittlung der Dokumentation der Veränderungen, die bei
jeder Präsentation eines Kunstwerkes durchgeführt werden und die
Motivation hinter jeder Vorführung sind wichtig für die Erhaltung,
erneute Präsentation und das zukünftige Verständnis des Werkes.
Allerdings ist es generell so, dass die existierende digitale Archivier-
ung und die Dokumentationssysteme, die von vielen Museen einge-
setzt werden, nicht für komplexe digitale Kunst nutzbar sind. Auf der
Suche nach einem leicht änderbaren, gemeinsam nutzbaren und von
anderen übernehmbaren Konzept, konzentriert sich dieser Artikel
auf open-source Alternativen, die auch kollaboratives Arbeiten mit
dem Teilen und Ändern von Information ermöglichen. Als ein inter-
disziplinäres Team von Restauratoren, Forschern, Künstlern und Pro-
grammierern wollen die Autoren die Funktionalität zweier Systeme
mit Versionskontrolle untersuchen und vergleichen, MediaWiki und
Git. Die technischen Details, Vor- und Nachteile bei der Archivierung
komplexer digitaler Kunst, sowie das Potential für kollaborative
Workflows werden untersucht und reflektiert.

Resumen
“Archivando obras de arte digital complejas”
La transmisión de documentación de los cambios en cada exposi-
ción de una obra de arte y la motivación detrás de cada muestra
son importantes para la preservación continua de la obra, su re
exposición y su comprensión futura. Sin embargo, en general, se
reconoce que los sistemas existentes de archivo y documentación
digital utilizados por muchos museos no son adecuados para
obras de arte digital complejas. Buscando un enfoque que otros
puedan ajustar, compartir y adoptar fácilmente, este artículo se
centra en alternativas de código abierto que también permitan el
trabajo colaborativo y que faciliten el intercambio y la divulgación
de información. Los autores, un equipo interdisciplinario de conser-
vadores, investigadores, artistas y programadores, se dispusieron a
explorar y comparar las características de dos sistemas de control
de versiones: MediaWiki y Git. Reflexionamos sobre sus detalles téc-
nicos, ventajas e inconvenientes para archivar obras de arte digitales
complejas, mientras observamos el potencial que ofrecen para los
procesos de trabajos colaborativos.

40 Jonathan Morgan and Sandra Fau-
connier, ‘What Galleries, Libraries,
Archives, and Museums can Teach Us
about Multimedia Metadata on Wikime-
dia Commons’, Wikimedia Blog, 29
January 2018, https://blog.wikimedia.
org/2018/01/29/glam-multimedia-meta
data-commons/ (accessed 23 Septem-
ber 2018).

Archiving complex digital artworks 19

Journal of the Institute of Conservation 2019

http://orcid.org/0000-0002-0691-0748
http://orcid.org/0000-0002-8979-987X
http://orcid.org/0000-0003-2612-5672
https://blog.wikimedia.org/2018/01/29/glam-multimedia-metadata-commons/
https://blog.wikimedia.org/2018/01/29/glam-multimedia-metadata-commons/
https://blog.wikimedia.org/2018/01/29/glam-multimedia-metadata-commons/

摘要

“复杂的数字艺术品的存档”

对于艺术品的持久保存、再展览和后续理解十分重要的是其每次展

示时变更部分的记录存档和展示动机。然而，人们普遍认为许多博

物馆现有的数字存档和文件系统并不适合存储复杂的数字艺术品。

本文以能满足多方信息共享与变更的替代方案为重点，旨在寻找一

种易于调整、共享和采纳的方法。本文作者是由保存修复人员、研

究人员、艺术家和程序员组成的跨学科团队，他们打算探索和比较

两个以版本控制为特色的系统（MediaWiki 和 Git）的功能。他们将

反思两个系统在存档复杂的数字艺术品时的技术细节、优点和缺

点，同时着眼于它们在协同工作流上带来的潜力。

Biographies
Dušan Barok is a PhD Fellow of the Marie Skłodowska-Curie Innova-
tive Training Network ‘New Approaches in the Conservation of Con-
temporary Art’ (NACCA) at the University of Amsterdam. He
graduated in Information Technologies from the University of Econ-
omics, Bratislava, and Networked Media Design from the Piet Zwart
Institute, Rotterdam.

Julie Boschat Thorez is an artist and researcher with an interest in
information structuring and the influence of digital networks on

human agency. She was trained in Fine Arts at the ERG in Brussels
and Media Design at the Piet Zwart Institute in Rotterdam.

Annet Dekker is Assistant Professor of Media Studies: Archival and
Information Studies at the University of Amsterdam and Visiting Pro-
fessor and co-director of the Centre for the Study of the Networked
Image at London South Bank University.

David Gauthier is a PhD Fellow of the Netherlands Institute of Cul-
tural Analysis (NICA) based at the Amsterdam School of Cultural
Analysis (ASCA) of the University of Amsterdam. He holds a
degree in Media Arts & Sciences from the Massachusetts Institute
of Technology and a degree in Mathematics from the Université
du Québec à Montréal.

Claudia Roeck is a time-based media conservator, fascinated and
confronted with fast technological change and the processual
character of many contemporary artworks. Currently, she is
researching preservation strategies for software-based artworks
as a PhD candidate at the University of Amsterdam for the
NACCA.eu project.

Contact address
Dušan Barok
Department of Media Studies/Amsterdam
School for Heritage, Memory and Material
Culture
University of Amsterdam
The Netherlands
Email: D.Barok@uva.nl,
db@monoskop.org

Julie Boschat Thorez
Independent Artist and Researcher
The Netherlands
Email: jboschatthorez@gmail.com

Annet Dekker
Department of Media Studies/Amsterdam
School for Cultural Analysis
University of Amsterdam
The Netherlands
Email: annet@aaaan.net

David Gauthier
Department of Media Studies/Amsterdam
School for Cultural Analysis
University of Amsterdam
The Netherlands
Email: gauthier@uva.nl

Claudia Roeck
Department of Media Studies/Amsterdam
School for Heritage, Memory and Material
Culture
University of Amsterdam
The Netherlands
Email: claudia.roeck@crockodile.ch

20 Barok, Boschat Thorez, Dekker, Gauthier and Roeck

Journal of the Institute of Conservation 2019

mailto:D.Barok@uva.nl
mailto:db@monoskop.org
mailto:jboschatthorez@gmail.com
mailto:annet@aaaan.net
mailto:gauthier@uva.nl
mailto:claudia.roeck@crockodile.ch

	Abstract
	Introduction
	Chinese Gold: the data
	Version control: an introduction
	1 Wiki
	2 Git and GitLab

	Git and MediaWiki: a system-level comparison
	1 Versioning models
	2 Synchronisation

	Experiments and findings
	1 File and storage management
	1a MediaWiki
	1b Git

	2 Metadata and provenance
	2a MediaWiki
	2b Git

	3 Context, presentation, curation
	3a MediaWiki
	3b Git

	4 Collaboration, usability
	4a MediaWiki
	4b Git

	A preliminary conclusion
	ORCID

